a2 United States Patent

US009432688B2

10) Patent No.: US 9,432,688 B2

Hellman et al. 45) Date of Patent: Aug. 30,2016
(54) PARALLEL SYMBOL DECODING (56) References Cited
(71) Applicant: BROADCOM CORPORATION, U.S. PATENT DOCUMENTS
Irvine, CA (US)
6,466,624 B1* 10/2002 Foggcccccovvvvvnnen HO4AN 19/46
(72) Inventors: Timothy Moore Hellman, Concord 375/240.12
4 4 2004/0240743 Al* 12/2004 Hamada HO4N 19/51
MA (US); Nirmala Paul, Chelmsford, 382/233
MA (US); Stephen Michael .
Thor(npszn, AIcJton, MA (US) (Continued)
OTHER PUBLICATIONS
(73) Assignee: Broadcom Corporation, Irvine, CA
(us) “Image Processing—Context-Based Adaptive Binary Arithmetic
Coding (CABAC)”, Fraunhofer Heinrich-Hertz-Institut, retrieved
(*) Notice: Subject to any disclaimer, the term of this from <www.hhi.fraunhofer.de/de/kompetenzfelder/image-process-
patent is extended or adjusted under 35 ing/research-groups/image-video-coding/statistical-modeling-cod-
U.S.C. 154(b) by 320 days. ing/context-based-adaptive-binary . . . > on Jul. 19, 2013, pp. 1-3.
(21) Appl. No.: 14/028,455 (Continued)
(22) Filed: Sep. 16, 2013 Primary Examiner — Joseph Ustaris
. L Assistant Examiner — Rebecca Volentine
(65) Prior Publication Data (74) Attorney, Agent, or Firm — McDermott Will & Emery
US 2015/0055708 Al Feb. 26, 2015 LLP
Related U.S. Application Data (57) ABSTRACT
(60) Provisional application No. 61/870,193, filed on Aug. A device for parallel symbol decoding may include a first
26, 2013. and second block. The first block is configured to convert a
bitstream into a stream of binary symbols corresponding to
(51) Int. CL motion vector data and other compressed image data, insert
H04B 1/66 (2006.01) length fields into the stream of binary symbols that are each
HO4N 7/12 (2006.01) indicative of a number of consecutive binary symbols that
HO4N 11/02 (2006.01) correspond to motion vector data, and store the stream of
HO4IN 11/04 (2006.01) binary symbols in a buffer. The second block is configured
HO4N 19/52 .(2014'01) to retrieve the stream of binary symbols from the buffer,
(Continued) determine, based at least in part on the inserted length fields,
(52) U.S.CL consecutive binary symbols that correspond to motion vec-
CPC .o HO04N 19/52 (2014.11); HO4N 19/13 tor data, decode the consecutive binary symbols that corre-
(2014.11); HO4N 19/1887 (2014.11); HO4N spond to motion vector data via a first decode path, and to
19/436 (2014.11); HO4N 19/44 (2014.11); decode binary symbols that correspond to other compressed
HO4N 19/46 (2014.11) image data via a second decode path that is independent of
(58) Field of Classification Search the first decode path.

None
See application file for complete search history.

402

404

408

410

CONVERT BITSTREAM INTO
STREAM CF BINARY SYMBOLS)|

BINARY
NO,~“SYMBOL INCLUDES ™\ YES
MOTION VECTOR

20 Claims, 9 Drawing Sheets

)’ 400

- RESERVE SPACE
FOR LENGTH FIELD

STORE BINARY SYMBOLS THAT|
COMPRISE MOTION VECTOR
DATA IN ON-CHIP BUFFER

DETERMINE NUMBER CF BINARY|
SYMBOLS THAT INCLUDE
MOTION VECTOR DATA

a2 INSERT LENGTH FIELD INTO STREAM
PRICR TO BINARY SYMBOLS THAT
414 INCLUDE MOTION VECTOR DATA

STORE BINARY
SYMBOLS IN MEMORY

US 9,432,688 B2

Page 2
(51) Int. CL 2011/0254712 A1* 10/2011 He .oooovvvvvvevirenne HO3M 7/40
HOIN 19713 (2014.01) 2012/0121024 Al* 5/2012 L H04N341‘é;§;
HO4N 19/44 (2014.01) €6 ety
HO4N 19/436 (2014.01) 2012/0207213 Al* 82012 Amon HO04N 19/13
375/240.08
HO4N 19/169 (2014.01) 2012/0269448 Al* 10/2012 Kimura HO04N 19/60
HO4N 19/46 (2014.01) 382/233
2013/0114686 Al 5/2013 Misra et al.
(56) References Cited

U.S. PATENT DOCUMENTS

2006/0109912 Al* 5/2006 Winger HO04B 1/66
375/240.23

2011/0248872 Al1* 10/2011 Korodicccoovnneen. HO3M 7/40
341/67

OTHER PUBLICATIONS
Sullivan, et al., “Overview of the High Efficiency Video Coding
(HEVC) Standard”, IEEE Transactions on Circuits and Systems for
Video Technology, Dec. 2012, pp. 1649-1668, vol. 22, No. 12.

* cited by examiner

U.S. Patent Aug. 30, 2016 Sheet 1 of 9 US 9,432,688 B2

FIG. 1

US 9,432,688 B2

Sheet 2 of 9

Aug. 30, 2016

U.S. Patent

¢ 9Old
10883001d . 777 Aowoap ~ 072
Jop023(
9L¢ J9jng .
A ¥0C
SUBIOE0T) < JOJBIOURD) |e— OWa
juspe0] 202
SI0)08/\ J0JRJaUAY) 18p099(
UONO 7 10j00/ n |oquiAg eleq OVEvY weans
14Xt S ndu
SOpON _ | dojeseus | | 0le e el
leneds Spoj efeds | - sjoquiAg
N2z
002

- 0Z)

US 9,432,688 B2

Sheet 3 of 9

Aug. 30, 2016

U.S. Patent

€ 9old
azIs Joquiig
8¢ 0Z€
(eyep Jusilyeoo & <
'sopow [ejeds) 9p033(Q mu OEIE Aﬂmo
s|oquAg Jayl0 o fowsy
~-9z¢ -
5715 [0QWAS vee c0¢
(J0jeIaUSs) J0J0OA &
0}) sjoquig 9p033(= Byng e— “L 0lLE
10109\ UOOW g
gle ™ 4%
012

U.S. Patent Aug. 30, 2016 Sheet 4 of 9 US 9,432,688 B2

J‘“’ 400

402 —.| CONVERT BITSTREAM INTO
STREAM OF BINARY SYMBOLS

404

BINARY
NO .~ SYMBOL INCLUDES ™. YES
MOTION VECTOR
DATA?

406 —.| RESERVE SPACE
FOR LENGTH FIELD

A

y
STORE BINARY SYMBOLS THAT
COMPRISE MOTION VECTOR
DATA IN ON-CHIP BUFFER

408 —|

410 DETERMINE NUMBER OF BINARY
™ SYMBOLS THAT INCLUDE
MOTION VECTOR DATA

!

12 INSERT LENGTH FIELD INTO STREAM
"™ PRIOR TO BINARY SYMBOLS THAT
414 Iy INCLUDE MOTION VECTOR DATA

A 4

STORE BINARY
SYMBOLS IN MEMORY

FIG. 4

U.S. Patent Aug. 30, 2016 Sheet 5 of 9 US 9,432,688 B2

¢ 500
P

502 —.|RETRIEVE BINARY SYMBOL
STREAM FROM MEMORY

506 - N 508 N !

Y

PROVIDE BINARY SYMBOLS EXTRACT NUMBER OF
TO SECOND DECODE PATH CONSECUTIVE SYMBOLS INDICATED

BY LENGTH FIELD FROM STREAM

510 PROVIDE EXTRACTED
™ SYMBOLS TO FIRST
DECODE PATH

FIG. 5

U.S. Patent Aug. 30, 2016 Sheet 6 of 9 US 9,432,688 B2

W%O
Bin Data
/ /
77
L~ 602
CuU
Header
- 604 Length Field: 10 bits

Length Gives the length of the
vector BIN data, in bits

606 Vector
Data

Coef

Data

/ /
/7

L~ 608

FIG. 6

US 9,432,688 B2

Sheet 7 of 9

Aug. 30, 2016

U.S. Patent

Buipooa(g |euas

l 9Old
- awi |
802! 7 80LL
/ 2#N0 \/ 1# N0 \
2p033(] 1UaldIl}a0 2p0d2a(] 1ualdl}le0
POI9(] Juadly o,..!,m_@mN PO23(Q JusIdlY O/,m_@E
300980 AW ap09aQ 3p0950 AN 2p023Q &N; 400,
no no
- 0. Negvgs el Sgpll -8gll
Buipooa(] |9|jeled
Y0ZL Y0l
/ Z10) \/ ETh) \
9pode | 9pode(q 9podaq |epodeq
ap0od39(] Jualdljjeo 2p009(] JUaldIljo0
posequapyeoy | T ST epooaquepyeon | T TR 4 oo,
- Y0€eL N v9z. vyl MVZZL o “YoLL NwplL vkl

U.S. Patent Aug. 30, 2016 Sheet 8 of 9 US 9,432,688 B2

AE" 800

v

802 ~,| Parse Coding Unit Data
(Split flags, CU Type)

804

CU Type is
Spatial?

Yes

'

806 - Parse Spatial 808 -| Parse Motion
Mode Data Vector Data
810~
Parse Transform |
Coefficient Data

FIG. 8

US 9,432,688 B2

Sheet 9 of 9

Aug. 30, 2016

U.S. Patent

6 'Ol
9 NM 14 ﬁ 4 m 0 m
N——— 90BaU|
901N 10559901 NOY
HIOMBN ndu
806
30epa)|
18p029(] 80IA8(Q \M_Mc%_\,_ | dbrioig
;nding IS
002 906 706 06

- 006

US 9,432,688 B2

1
PARALLEL SYMBOL DECODING

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of U.S. Provi-
sional Patent Application Ser. No. 61/870,193, entitled “Par-
allel Symbol Decoding,” filed on Aug. 26, 2013, which is
hereby incorporated by reference in its entirety for all
purposes.

TECHNICAL FIELD

The present description relates generally to symbol
decoding, and more particularly, but not exclusively, to
parallel symbol decoding in a decoder.

BACKGROUND

The introduction of high resolution 4 k and 8 k Ultra-HD
video displays has led to a demand for 4 k and 8 k Ultra-HD
content. However, the bit rate of uncompressed 4 k and 8 k
Ultra-HD video streams is significantly higher than the bit
rate of uncompressed HD video streams, e.g. up to eight
times higher, which may render some existing video com-
pression/encoding standards unsuitable for 4 k and 8 k
Ultra-HD video streams. As such, additional video compres-
sion standards, such as the High Efficiency Video Coding
(HEVC) Standard, have been developed for use with high
resolution video streams, e.g., 4 k and 8 k Ultra-HD video
streams. In the HEVC Standard, an encoded bitstream
includes a series of arithmetic-coded symbols that corre-
spond to elements of a compressed image, such as spatial
prediction modes, motion vector data, transform coeffi-
cients, etc. The elements are combined into coding units
(CUs) that correspond to square pixel regions of the coded
image.

A video decoder implementing the HEVC Standard, e.g.
an HEVC decoder, receives the bitstream that includes
HEVC coding units and passes the bitstream through a
Context Adaptive Binary Arithmetic Coder (CABAC) block.
The CABAC block converts the coding units of the bit-
stream into a stream of binary symbols (“bins”) and stores
the binary symbols in a memory buffer. A symbol decoder of
the HEVC decoder retrieves the binary symbols from the
memory buffer and decodes the binary symbols into the
symbols that correspond to the elements of the compressed
image, such as spatial prediction mode symbols, motion
vector symbols and/or transform coefficient symbols. The
symbols that correspond to the elements of the compressed
image are passed to appropriate blocks for generating the
corresponding elements, e.g. spatial prediction modes,
motion vectors, transform coeflicients, etc. However, since
the symbols that correspond to the elements may be of
varying lengths that are unknown to the symbol decoder, the
symbol decoder may need to decode the binary symbols in
serial fashion. The serial operation of the symbol decoder
may limit the overall decoding performance of the HEVC
decoder, which may require that the HEVC decoder operate
at a very high frequency to decode high resolution video
streams, e.g. 4 k or 8 k Ultra-HD video streams.

BRIEF DESCRIPTION OF THE DRAWINGS

Certain features of the subject technology are set forth in
the appended claims. However, for purpose of explanation,
several embodiments of the subject technology are set forth
in the following figures.

10

15

25

40

45

60

2

FIG. 1 illustrates an example network environment in
which parallel symbol decoding may be implemented in
accordance with one or more implementations.

FIG. 2 illustrates an example electronic device that may
implement parallel symbol decoding in accordance with one
or more implementations.

FIG. 3 illustrates an example symbol decoder that may
perform parallel symbol decoding in accordance with one or
more implementations.

FIG. 4 illustrates a flow diagram of an example process of
a first decoder block of a decoder in accordance with one or
more implementations.

FIG. 5 illustrates a flow diagram of an example process of
a second decoder block of a decoder in accordance with one
or more implementations.

FIG. 6 illustrates an example binary symbol stream in
accordance with one or more implementations.

FIG. 7 illustrates an example timing diagram for serial
symbol decoding and an example timing diagram for par-
allel symbol decoding in accordance with one or more
implementations.

FIG. 8 illustrates a flow diagram of an example process
for parsing a coding unit in accordance with one or more
implementations.

FIG. 9 conceptually illustrates an electronic system with
which one or more implementations of the subject technol-
ogy may be implemented.

DETAILED DESCRIPTION

The detailed description set forth below is intended as a
description of various configurations of the subject technol-
ogy and is not intended to represent the only configurations
in which the subject technology may be practiced. The
appended drawings are incorporated herein and constitute a
part of the detailed description. The detailed description
includes specific details for the purpose of providing a
thorough understanding of the subject technology. However,
the subject technology is not limited to the specific details
set forth herein and may be practiced using one or more
implementations. In one or more instances, structures and
components are shown in block diagram form in order to
avoid obscuring the concepts of the subject technology.

In the subject system for parallel symbol decoding, the
CABAC block of a decoder inserts information, such as
length fields, into the stream of binary symbols that is being
stored in the memory buffer. The inserted length field
provides the symbol decoder with the lengths of one or more
of the elements encoded by the binary symbols, which
enables the symbol decoder to decode multiple binary
symbols in parallel. The parallel symbol decoding by the
symbol decoder increases the performance and efficiency of
the decoding process and thereby facilitates the decoding of
high resolution video streams, e.g. 4 k or 8 k Ultra-HD video
streams.

FIG. 1 illustrates an example network environment 100 in
which parallel symbol decoding may be implemented in
accordance with one or more implementations. Not all of the
depicted components may be required, however, and one or
more implementations may include additional components
not shown in the figure. Variations in the arrangement and
type of the components may be made without departing
from the spirit or scope of the claims as set forth herein.
Additional components, different components, or fewer
components may be provided.

The example network environment 100 includes a content
delivery network (CDN) 110 that is communicably coupled

US 9,432,688 B2

3

to an electronic device 120, such as by a network 108. The
CDN 110 may include, and/or may be communicably
coupled to, a content server 112 for transmitting encoded
data streams, such as HEVC encoded video streams, over
the network 108, an antenna 116 for transmitting encoded
data streams over the air, and a satellite transmitting device
118 for transmitting encoded data streams to a satellite 115.
The electronic device 120 may include, and/or may be
coupled to, a satellite receiving device 122, such as a
satellite dish, that receives encoded data streams from the
satellite 115. In one or more implementations, the electronic
device 120 may further include an antenna for receiving
encoded data streams, such as HEVC encoded video
streams, over the air from the antenna 116 of the CDN 110.
The content server 112 and/or the electronic device 120, may
be, or may include, one or more components of the elec-
tronic system discussed below with respect to FIG. 8.

The network 108 may be a public communication net-
work (such as the Internet, cellular data network, dialup
modems over a telephone network) or a private communi-
cations network (such as private local area network
(“LAN™), leased lines). The network 108 may also include,
but is not limited to, any one or more of the following
network topologies, including a bus network, a star network,
a ring network, a mesh network, a star-bus network, a tree
or hierarchical network, and the like. In one or more
implementations, the network 108 may include transmission
lines, such as coaxial transmission lines, fiber optic trans-
mission lines, or generally any transmission lines, that
communicatively couple the content server 112 and the
electronic device 120.

The content server 112 may include, or may be coupled to,
one or more processing devices, a data store 114, and/or an
encoder. The one or more processing devices execute com-
puter instructions stored in the data store 114, for example,
to implement a content delivery network. The data store 114
may store the computer instructions on a non-transitory
computer-readable medium. The data store 114 may further
store one or more programs, e.g. video and/or audio streams,
that are delivered by the CDN 110. The encoder may use a
codec to encode video streams, such as an HEVC codec or
any other suitable codec. In one or more implementations,
the content server 112 may be a single computing device
such as a computer server. Alternatively, the content server
112 may represent multiple computing devices that are
working together to perform the actions of a server computer
(such as a cloud of computers and/or a distributed system).
The content server 112 may be coupled with various data-
bases, storage services, or other computing devices, such as
an adaptive bit rate (ABR) server, that may be collocated
with the content server 112 or may be disparately located
from the content server 112.

The electronic device 120 may include, or may be coupled
to, one or more processing devices, a memory, and/or a
decoder, such as a hardware decoder. The electronic device
120 may be any device that is capable of decoding an
encoded data stream, such as an HEVC encoded video
stream. In one or more implementations, the electronic
device 120 may be, or may include all or part of, a laptop or
desktop computer, a smartphone, a personal digital assistant
(“PDA”), a portable media player, a tablet computer, a
wearable electronic device, such as a pair of glasses or a
watch with one or more processors coupled thereto and/or
embedded therein, a set-top box, a television or other display
with one or more processors coupled thereto and/or embed-
ded therein, or other appropriate electronic devices that can

10

15

20

25

30

35

40

45

50

55

60

65

4

be used to decode an encoded data stream, such as an
encoded HEVC video stream.

In FIG. 1, the electronic device 120 is depicted as a set-top
box, e.g. a device that is coupled to, and is capable of
displaying video content on, a display 124, such as a
television, a monitor, or any device capable of displaying
video content. In one or more implementations, the elec-
tronic device 120 may be integrated into the display 124
and/or the display 124 may be capable of outputting audio
content in addition to video content. The electronic device
120 may receive streams from the CDN 110, such as
encoded data streams, that include content items, such as
television programs, movies, or generally any content items.
The electronic device 120 may receive the encoded data
streams from the CDN 110 via the antenna 116, via the
network 108, and/or via the satellite 115, and decode the
encoded data streams, e.g. using the hardware decoder. An
example electronic device 120 is discussed further below
with respect to FIG. 2.

FIG. 2 illustrates an example electronic device 120 that
may implement parallel symbol decoding in accordance
with one or more implementations. Not all of the depicted
components may be required, however, and one or more
implementations may include additional components not
shown in the figure. Variations in the arrangement and type
of the components may be made without departing from the
spirit or scope of the claims as set forth herein. Additional
components, different components, or fewer components
may be provided.

The electronic device 120 includes a decoder 200, a
memory 220, and one or more processors 222. The decoder
200 includes a CABAC block 202, a memory buffer 204, a
symbol decoder 210, a spatial mode generator 212, a vector
generator 214, and a coefficient generator 216. In one or
more implementations, any of the CABAC block 202, a
memory buffer 204, a symbol decoder 210, a spatial mode
generator 212, a vector generator 214, and a coeflicient
generator 216 may be referred to as a decoder block.

In the subject system for parallel symbol decoding, the
electronic device 120 receives a bitstream that includes an
encoded video stream, such as a video stream encoded using
an HEVC codec. The electronic device 120 passes the
bitstream to the CABAC block 202 of the decoder 200. In
one or more implementations, the bitstream may be orga-
nized in a format that is associated with the codec used to
encode the bitstream, such as the HEVC codec. The CABAC
block 202 may parse the bitstream based on the format
associated with the codec. An example process for parsing
a bitstream, e.g. based on the HEVC codec, is discussed
further below with respect to FIG. 8.

The CABAC block 202 parses the bitstream and converts
the bitstream into a stream of binary symbols that are stored
in the memory buffer 204. However, when the CABAC
block 202 identifies a binary symbol that corresponds to the
start of motion vector data, e.g. based on the determined or
known organization or format of the bitstream, the CABAC
block 202 buffers the binary symbol, and subsequent con-
secutive binary symbols that include motion vector data, in
an on-chip buffer, or an internal buffer. The CABAC block
202 also leaves space in the on-chip buffer before the binary
symbol for a fixed-sized length field, such as a ten bit field.
In one or more implementations, the length of the motion
vector data may be bounded, e.g. less than 1024 bits, thus
limiting the amount of on-chip buffer space required by the
CABAC block 202. The CABAC block 202 continues to
convert the bitstream into binary symbols, and buffer the
binary symbols in the on-chip buffer, until the CABAC

US 9,432,688 B2

5

block 202 identifies a binary symbol that corresponds to the
end of the motion vector data. For example, the CABAC
block 202 may identify the last binary symbol that corre-
sponds to motion vector data or the first binary symbol that
corresponds to the next compressed image data, such as
transform coefficient data.

Upon identifying the binary symbol that corresponds to
the end of the motion vector data, the CABAC block 202
determines the length of the motion vector data, e.g. based
on the number of binary symbols stored in the on-chip
buffer. The CABAC block 202 inserts the length of the
motion vector data into the previously reserved space for the
length field, and writes all of the internally buffered data, e.g.
the length field and the binary symbols, to the memory
buffer 204. An example format of the stream of binary
symbols, including an inserted length field, is discussed
further below with respect to FIG. 6. The CABAC block 202
may continue to convert the bitstream into the stream of
binary symbols and insert length fields before consecutive
binary symbols that include motion vector data, e.g. until the
entirety of the bitstream has been converted. An example
process of the CABAC block 202 is discussed further below
with respect to FIG. 4.

The symbol decoder 210 may subsequently retrieve the
symbols from the memory buffer 204 and utilize the inserted
length field as a pointer to the end of the binary symbols that
include the motion vector data and, consequently, the start of
the binary symbols that include the next compressed image
data, e.g. transform coefficient data. Thus, the symbol
decoder 210 may decode the binary symbols that include the
motion vector data (and provide the motion vector data to
the vector generator 214) and in parallel with decoding the
binary symbols that include other compressed image data
(and providing the other compressed image data to the
spatial mode generator 212 or the coefficient generator 216).
Example components of the symbol decoder 210 are dis-
cussed further below with respect to FIG. 3, and an example
process of the symbol decoder 210 is discussed further
below with respect to FIG. 5.

Since the symbol decoder 210 can extract and decode the
binary symbols that include motion vector data in parallel
with, e.g. at substantially the same time as, binary symbols
that include other compressed image data, such as spatial
mode data, transform coefficient data, etc. time required for
decoding the compressed image data can be significantly
reduced. An example timeline illustrating the reduction in
decoding time achieved by parallel symbol decoding as
compared to serial symbol decoding is discussed further
below with respect to FIG. 7.

FIG. 3 illustrates an example symbol decoder 210 that
may perform parallel symbol decoding in accordance with
one or more implementations. Not all of the depicted com-
ponents may be required, however, and one or more imple-
mentations may include additional components not shown in
the figure. Variations in the arrangement and type of the
components may be made without departing from the spirit
or scope of the claims as set forth herein. Additional
components, different components, or fewer components
may be provided.

The symbol decoder 210 includes a first in first out (FIFO)
memory 302, a first decode path 310, and a second decode
path 320. The first decode path 310 decodes binary symbols
corresponding to motion vector data and provides the
decoded motion vector data to the vector generator 214. The
first decode path 310 includes a buffer 312, a first alignment
block 314, a register 316, and a first decode block 318. The
second decode path 320 decodes binary symbols corre-

30

40

45

6

sponding to other compressed image data, such as spatial
mode data, transform coefficient data, etc., provides decoded
spatial mode data to the spatial mode generator 212 and
provides decoded transform coefficient data to the coeffi-
cient generator 216. The second decode path 320 includes a
second alignment block 324, a register 326, and a second
decode block 328. In one or more implementations, the first
decode path 310 may be physically separate and distinct
from the second decode path 320.

In operation, the symbol decoder 210 may retrieve the
binary symbol stream from the memory buffer 204 and may
store the binary symbol stream in the FIFO memory 302.
The symbol decoder 210 may retrieve the binary symbol
stream from the FIFO memory 302 and pass the binary
symbol stream to the second decode path 320, until the
symbol decoder 210 identifies a length field in the binary
symbol stream. When the symbol decoder 210 identifies a
length field in the binary symbol stream, e.g. indicating that
a subsequent number of consecutive symbols correspond to
motion vector data, the symbol decoder 210 extracts the
number of consecutive binary symbols from the stream
indicated by the length field, and passes the extracted binary
symbols to the first decode path 310. Thus, the symbol
decoder 210 passes the extracted binary symbols that cor-
respond to motion vector data to the first decode path 310
rather than the second decode path 320.

The buffer 312 of the first decode path 310 buffers
received binary symbols, e.g. when the pipeline of the first
decode path 310 is full. The first alignment block 314
performs alignment for the binary symbols retrieved from
the buffer 312, such as based on a bit position. The binary
symbols are stored in the register 316 from which they are
retrieved by the first decode block 318. The first decode
block 318 performs a symbol decode, e.g. a table look-up,
which determines both the symbol value and the size of the
symbol in bits. The first decode block 318 provides the size
of the symbol in bits to the first alignment block 314 which
updates the bit position for the binary symbols being
retrieved from the bufter 312. The decoded binary symbols
are then provided to the vector generator 214.

The second alignment block 324 retrieves binary symbols
directly from the FIFO memory 302. The second alignment
block 324 performs alignment for the binary symbols
retrieved from the FIFO memory 302, such as based on a bit
position. The binary symbols are stored in the register 326
from which they are retrieved by the second decode block
328. The second decode block 328 performs a symbol
decode, e.g. a table look-up, which determines both the
symbol value and the size of the symbol in bits. The second
decode block 328 provides the size of the symbol in bits to
the second alignment block 324 which updates the bit
position for the binary symbols being retrieved from the
FIFO memory 302. The decoded binary symbols are then
provided to the spatial mode generator 212, in the case of
spatial mode data, or the coefficient generator 216, in the
case of transform coefficient data.

FIG. 4 illustrates a flow diagram of an example process
400 of a first decoder block of a decoder 200 in accordance
with one or more implementations. For explanatory pur-
poses, the example process 400 is described herein with
reference to the CABAC block 202 of FIG. 2; however, the
example process 400 is not limited to the CABAC block 202
of FIG. 2, and the example process 400 may be performed
by one or more other components of the decoder 200.
Further for explanatory purposes, the blocks of the example
process 400 are described herein as occurring in serial, or
linearly. However, multiple blocks of the example process

US 9,432,688 B2

7

400 may occur in parallel. In addition, the blocks of the
example process 400 need not be performed in the order
shown and/or one or more of the blocks of the example
process 400 need not be performed.

The CABAC block 202 converts an encoded bitstream
into a stream of binary symbols (402), e.g. based at least in
part on a CABAC encoding associated with the codec used
to encode the bitstream. As the CABAC block 202 is
converting the encoded bitstream into the stream of binary
symbols (402), the CABAC block 202 determines whether
a converted binary symbol includes motion vector data
(404), e.g. based on the organization of the bitstream asso-
ciated with the codec used to encode the bitstream. If the
CABAC block 202 determines that the binary symbol does
not include motion vector data (404), the CABAC block 202
stores the binary symbol in the memory buffer 204 (414).

If the CABAC block 202 determines that the binary
symbol includes motion vector data (404), the CABAC
block 202 reserves space in an on-chip buffer for a length
field (406), and stores the subsequent consecutive binary
symbols that include motion vector data in the on-chip buffer
(408). Once the subsequent consecutive binary symbols that
include motion vector data have been stored in the on-chip
buffer, e.g. when a binary symbol that does not include
motion vector data is identified by the CABAC block 202,
the CABAC block 202 determines the number of the con-
secutive binary symbols that include motion vector data
(410), such as by determining the number of binary symbols
stored in the on-chip buffer. The CABAC block 202 inserts
the determined number of the consecutive binary symbols
into the space reserved in the on-chip buffer for the length
field (412). The CABAC block 202 then retrieves the
inserted length field and the binary symbols from the on-
chip buffer and stores the inserted length field and the binary
symbols in the memory buffer 204 (414).

FIG. 5 illustrates a flow diagram of an example process
500 of a second decoder block of a decoder 200 in accor-
dance with one or more implementations. For explanatory
purposes, the example process 500 is described herein with
reference to the symbol decoder 210 of FIGS. 2 and 3;
however, the example process 500 is not limited to the
symbol decoder 210 of FIGS. 2 and 3, and the example
process 500 may be performed by one or more other
components of the symbol decoder 210. Further for explana-
tory purposes, the blocks of the example process 500 are
described herein as occurring in serial, or linearly. However,
multiple blocks of the example process 500 may occur in
parallel. In addition, the blocks of the example process 500
need not be performed in the order shown and/or one or
more of the blocks of the example process 500 need not be
performed.

The symbol decoder 210 retrieves the binary symbol
stream from the memory buffer 204 (502). The symbol
decoder 210 determines whether a length field is identified
in the binary symbol stream (504). If the symbol decoder
210 does not identify a length field in the binary symbol
stream (504), the symbol decoder 210 provides the binary
symbols of the binary symbol stream to the second decode
path 320 for decoding (506). If the symbol decoder 210
identifies a length field in the binary symbol stream (504),
the symbol decoder 210 extracts the number of consecutive
binary symbols indicated by the length field from the binary
symbol stream (508) and provides the extracted binary
symbols to the first decode path 310 for decoding (510).

FIG. 6 illustrates an example binary symbol stream 600 in
accordance with one or more implementations. Not all of the
depicted components may be required, however, and one or

10

15

20

25

30

35

40

45

50

55

60

65

8

more implementations may include additional components
not shown in the figure. Variations in the arrangement and
type of the components may be made without departing
from the spirit or scope of the claims as set forth herein.
Additional components, different components, or fewer
components may be provided.

The binary symbol stream 600 includes a coding unit
header 602, a length field 604, binary symbols that include
motion vector data 606 and binary symbols that include
coefficient data 608. The length field 604 indicates the
subsequent number of consecutive binary symbols that
include the motion vector data 606. In this manner, the
symbol decoder 210 can extract the binary symbols that
include motion vector data 606 and provide the binary
symbols that include the motion vector data 606 to the first
decode path 310 for decoding while the binary symbols that
include the coefficient data 608 are decoded by the second
decode path 320. In one or more implementations, the binary
symbol stream 600 may include multiple coding unit head-
ers 602, length fields 604, binary symbols that include
motion vector data 606 and binary symbols that include
coeflicient data 608.

FIG. 7 illustrates an example timing diagram for serial
symbol decoding 700A and an example timing diagram for
parallel symbol decoding 700B in accordance with one or
more implementations. Not all of the depicted components
may be required, however, and one or more implementations
may include additional components not shown in the figure.
Variations in the arrangement and type of the components
may be made without departing from the spirit or scope of
the claims as set forth herein. Additional components, dif-
ferent components, or fewer components may be provided.

The example timing diagram for serial symbol decoding
700A illustrates the serial symbol decoding of a first coding
unit 710A, a second coding unit 720A, and other com-
pressed image data 730A. The example timing diagram for
parallel symbol decoding 700B illustrates the parallel sym-
bol decoding of a first coding unit 710B, a second coding
unit 720B, and other compressed image data 730B. The first
coding units 710A, 710B are labeled differently for explana-
tory purposes; however, the first coding units 710A, 710B
contain the same contents. Similarly, the second coding units
720A, 720B are labeled differently for explanatory pur-
poses; however, the second coding units 720A, 720B contain
the same contents. Lastly, the other compressed image data
730A, 730B are labeled differently for explanatory pur-
poses; however, the other compressed image data 730A,
730B contain the same contents.

The first coding units 710A, 710B include coding unit
header decodes 712A, 712B, motion vector decodes 714A,
714B, and coefficient decodes 716A, 716B. The second
coding units 720A, 720B include coding unit header
decodes 722A, 722B, motion vector decodes 724A, 724B,
and coefficient decodes 726A, 726B. As shown in FIG. 7,
when using serial symbol decoding, each of the binary
symbols is decoded in serial, e.g. one-by-one. However, by
using parallel symbol decoding, multiple binary symbols
can be decoded in parallel, e.g. substantially simultaneously.
For example, the motion vector decode 714B can be per-
formed by the first decode path 310 while the coeflicient
decode 716B is performed by the second decode path 320.
Thus, as illustrated in FIG. 7, the parallel symbol decoding
provided by the subject system allows the first and second
coding units 7108, 720B to be decoded in significantly less
time than serial symbol decoding.

FIG. 8 illustrates a flow diagram of an example process
800 for parsing a coding unit in accordance with one or more

US 9,432,688 B2

9

implementations. For explanatory purposes, the example
process 800 is described herein with reference to the
CABAC block 202 of FIG. 2; however, the example process
800 is not limited to the CABAC block 202 of FIG. 2, and
the example process 800 may be performed by one or more
other components of the decoder 200. Further for explana-
tory purposes, the blocks of the example process 800 are
described herein as occurring in serial, or linearly. However,
multiple blocks of the example process 800 may occur in
parallel. In addition, the blocks of the example process 800
need not be performed in the order shown and/or one or
more of the blocks of the example process 800 need not be
performed.

The CABAC block 202 receives an encoded bitstream
containing coding units and parses coding unit data, such as
split flags, coding unit (CU) types, etc. from the bitstream
(802). The CABAC block 202 determines whether the
parsed CU type indicates that the coding unit includes
spatial data (804). If the CABAC block 202 determines that
the parsed CU type indicates that the coding unit includes
spatial data (804), the CABAC block 202 parses information
from the bitstream that corresponds to spatial mode data
(806). If the CABAC block 202 determines that the parsed
CU type does not indicate that the coding unit includes
spatial data (804), the CABAC block 202 parses information
from the bitstream that includes motion vector data (808).
After parsing information that includes spatial mode data
(806) or motion vector data (808), the CABAC block 202
parses information from the bitstream that includes trans-
form coefficient data (810). The CABAC block 202 repeats
this process for the entirety of the bitstream. In this manner,
the CABAC block 202 can determine where motion vector
data starts and ends in the bitstream and/or the binary
symbol stream, and can therefore insert the length fields into
the binary symbol stream corresponding to the motion
vector data.

FIG. 9 conceptually illustrates an electronic system 900
with which one or more implementations of the subject
technology may be implemented. The electronic system 900,
for example, can be a desktop computer, a laptop computer,
a tablet computer, a server, a switch, a router, a base station,
a receiver, a phone, a personal digital assistant (PDA), or
generally any electronic device that transmits signals over a
network. The electronic system 900 may be, and/or may
include one or more components of, the electronic device
120. Such an electronic system 900 includes various types of
computer readable media and interfaces for various other
types of computer readable media. The electronic system
900 includes a bus 908, one or more processing unit(s) 912,
a system memory 904, a read-only memory (ROM) 910, a
permanent storage device 902, an input device interface 914,
an output device interface 906, one or more network inter-
faces 916, such as local area network (LAN) interfaces
and/or wide area network interfaces (WAN), and a decoder
200 or subsets and variations thereof.

The bus 908 collectively represents all system, peripheral,
and chipset buses that communicatively connect the numer-
ous internal devices of the electronic system 900. In one or
more implementations, the bus 908 communicatively con-
nects the one or more processing unit(s) 912 with the ROM
910, the system memory 904, and the permanent storage
device 902. From these various memory units, the one or
more processing unit(s) 912 retrieves instructions to execute
and data to process in order to execute the processes of the
subject disclosure. The one or more processing unit(s) 912
can be a single processor or a multi-core processor in

10

15

20

25

30

35

40

45

50

55

60

65

10

different implementations. In one or more implementations,
the decoder 200 may be a hardware decoder.

The ROM 910 stores static data and instructions that are
needed by the one or more processing unit(s) 912 and other
modules of the electronic system 900. The permanent stor-
age device 902, on the other hand, may be a read-and-write
memory device. The permanent storage device 902 may be
a non-volatile memory unit that stores instructions and data
even when the electronic system 900 is off. In one or more
implementations, a mass-storage device (such as a magnetic
or optical disk and its corresponding disk drive) may be used
as the permanent storage device 902.

In one or more implementations, a removable storage
device (such as a floppy disk, flash drive, and its corre-
sponding disk drive) may be used as the permanent storage
device 902. Like the permanent storage device 902, the
system memory 904 may be a read-and-write memory
device. However, unlike the permanent storage device 902,
the system memory 904 may be a volatile read-and-write
memory, such as random access memory. The system
memory 904 may store any of the instructions and data that
one or more processing unit(s) 912 may need at runtime. In
one or more implementations, the processes of the subject
disclosure are stored in the system memory 904, the per-
manent storage device 902, and/or the ROM 910. From
these various memory units, the one or more processing
unit(s) 912 retrieves instructions to execute and data to
process in order to execute the processes of one or more
implementations.

The bus 908 also connects to the input and output device
interfaces 914 and 906. The input device interface 914
enables a user to communicate information and select com-
mands to the electronic system 900. Input devices that may
be used with the input device interface 914 may include, for
example, alphanumeric keyboards and pointing devices
(also called “cursor control devices”). The output device
interface 906 may enable, for example, the display of images
generated by electronic system 900. Output devices that may
be used with the output device interface 906 may include,
for example, printers and display devices, such as a liquid
crystal display (LCD), a light emitting diode (LED) display,
an organic light emitting diode (OLED) display, a flexible
display, a flat panel display, a solid state display, a projector,
or any other device for outputting information. One or more
implementations may include devices that function as both
input and output devices, such as a touchscreen. In these
implementations, feedback provided to the user can be any
form of sensory feedback, such as visual feedback, auditory
feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, or tactile
input.

Finally, as shown in FIG. 9, the bus 908 also couples the
electronic system 900 to a network (not shown) through one
or more network interfaces 916, such as one or more LAN
interfaces and/or WAN interfaces. In this manner, the elec-
tronic system 900 can be a part of a network of computers,
such as a LAN, a WAN, an Intranet, or a network of
networks, such as the Internet. Any or all components of the
electronic system 900 can be used in conjunction with the
subject disclosure.

Implementations within the scope of the present disclo-
sure can be partially or entirely realized using a tangible
computer-readable storage medium (or multiple tangible
computer-readable storage media of one or more types)
encoding one or more instructions. The tangible computer-
readable storage medium also can be non-transitory in
nature.

US 9,432,688 B2

11

The computer-readable storage medium can be any stor-
age medium that can be read, written, or otherwise accessed
by a general purpose or special purpose computing device,
including any processing electronics and/or processing cir-
cuitry capable of executing instructions. For example, with-
out limitation, the computer-readable medium can include
any volatile semiconductor memory, such as RAM, DRAM,
SRAM, T-RAM, Z-RAM, and TTRAM. The computer-
readable medium also can include any non-volatile semi-
conductor memory, such as ROM, PROM, EPROM,
EEPROM, NVRAM, flash, nvSRAM, FeRAM, FeTRAM,
MRAM, PRAM, CBRAM, SONOS, RRAM, NRAM, race-
track memory, FJG, and Millipede memory.

Further, the computer-readable storage medium can
include any non-semiconductor memory, such as optical
disk storage, magnetic disk storage, magnetic tape, other
magnetic storage devices, or any other medium capable of
storing one or more instructions. In some implementations,
the tangible computer-readable storage medium can be
directly coupled to a computing device, while in other
implementations, the tangible computer-readable storage
medium can be indirectly coupled to a computing device,
e.g., via one or more wired connections, one or more
wireless connections, or any combination thereof.

Instructions can be directly executable or can be used to
develop executable instructions. For example, instructions
can be realized as executable or non-executable machine
code or as instructions in a high-level language that can be
compiled to produce executable or non-executable machine
code. Further, instructions also can be realized as or can
include data. Computer-executable instructions also can be
organized in any format, including routines, subroutines,
programs, data structures, objects, modules, applications,
applets, functions, etc. As recognized by those of skill in the
art, details including, but not limited to, the number, struc-
ture, sequence, and organization of instructions can vary
significantly without varying the underlying logic, function,
processing, and output.

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute software, one or
more implementations are performed by one or more inte-
grated circuits, such as application specific integrated cir-
cuits (ASICs) or field programmable gate arrays (FPGAs).
In one or more implementations, such integrated circuits
execute instructions that are stored on the circuit itself.

Those of skill in the art would appreciate that the various
illustrative blocks, modules, elements, components, meth-
ods, and algorithms described herein may be implemented
as electronic hardware, computer software, or combinations
of'both. To illustrate this interchangeability of hardware and
software, various illustrative blocks, modules, elements,
components, methods, and algorithms have been described
above generally in terms of their functionality. Whether such
functionality is implemented as hardware or software
depends upon the particular application and design con-
straints imposed on the overall system. Skilled artisans may
implement the described functionality in varying ways for
each particular application. Various components and blocks
may be arranged differently (e.g., arranged in a different
order, or partitioned in a different way) all without departing
from the scope of the subject technology.

It is understood that any specific order or hierarchy of
blocks in the processes disclosed is an illustration of
example approaches. Based upon design preferences, it is
understood that the specific order or hierarchy of blocks in
the processes may be rearranged, or that all illustrated blocks
be performed. Any of the blocks may be performed simul-

10

15

20

25

30

35

40

45

50

55

60

65

12

taneously. In one or more implementations, multitasking and
parallel processing may be advantageous. Moreover, the
separation of various system components in the embodi-
ments described above should not be understood as requir-
ing such separation in all embodiments, and it should be
understood that the described program components and
systems can generally be integrated together in a single
software product or packaged into multiple software prod-
ucts.

As used in this specification and any claims of this
application, the terms “base station”, “receiver”, “com-
puter”, “server”, “processor”, and “memory” all refer to
electronic or other technological devices. These terms
exclude people or groups of people. For the purposes of the
specification, the terms “display” or “displaying” means
displaying on an electronic device.

As used herein, the phrase “at least one of” preceding a
series of items, with the term “and” or “or” to separate any
of the items, modifies the list as a whole, rather than each
member of the list (i.e., each item). The phrase “at least one
of” does not require selection of at least one of each item
listed; rather, the phrase allows a meaning that includes at
least one of any one of the items, and/or at least one of any
combination of the items, and/or at least one of each of the
items. By way of example, the phrases “at least one of A, B,
and C” or “at least one of A, B, or C” each refer to only A,
only B, or only C; any combination of A, B, and C; and/or
at least one of each of A, B, and C.

The predicate words “configured to”, “operable to”, and
“programmed to” do not imply any particular tangible or
intangible modification of a subject, but, rather, are intended
to be used interchangeably. In one or more implementations,
a processor configured to monitor and control an operation
or a component may also mean the processor being pro-
grammed to monitor and control the operation or the pro-
cessor being operable to monitor and control the operation.
Likewise, a processor configured to execute code can be
construed as a processor programmed to execute code or
operable to execute code.

A phrase such as “an aspect” does not imply that such
aspect is essential to the subject technology or that such
aspect applies to all configurations of the subject technology.
A disclosure relating to an aspect may apply to all configu-
rations, or one or more configurations. An aspect may
provide one or more examples of the disclosure. A phrase
such as an “aspect” may refer to one or more aspects and
vice versa. A phrase such as an “embodiment” does not
imply that such embodiment is essential to the subject
technology or that such embodiment applies to all configu-
rations of the subject technology. A disclosure relating to an
embodiment may apply to all embodiments, or one or more
embodiments. An embodiment may provide one or more
examples of the disclosure. A phrase such an “embodiment”
may refer to one or more embodiments and vice versa. A
phrase such as a “configuration” does not imply that such
configuration is essential to the subject technology or that
such configuration applies to all configurations of the subject
technology. A disclosure relating to a configuration may
apply to all configurations, or one or more configurations. A
configuration may provide one or more examples of the
disclosure. A phrase such as a “configuration” may refer to
one or more configurations and vice versa.

The word “exemplary” is used herein to mean “serving as
an example, instance, or illustration.” Any embodiment
described herein as “exemplary” or as an “example” is not
necessarily to be construed as preferred or advantageous
over other embodiments. Furthermore, to the extent that the

US 9,432,688 B2

13

term “include,” “have,” or the like is used in the description
or the claims, such term is intended to be inclusive in a
manner similar to the term “comprise” as “comprise” is
interpreted when employed as a transitional word in a claim.

All structural and functional equivalents to the elements
of the various aspects described throughout this disclosure
that are known or later come to be known to those of
ordinary skill in the art are expressly incorporated herein by
reference and are intended to be encompassed by the claims.
Moreover, nothing disclosed herein is intended to be dedi-
cated to the public regardless of whether such disclosure is
explicitly recited in the claims. No claim element is to be
construed under the provisions of 35 U.S.C. §112, sixth
paragraph, unless the element is expressly recited using the
phrase “means for” or, in the case of a method claim, the
element is recited using the phrase “step for.”

The previous description is provided to enable any person
skilled in the art to practice the various aspects described
herein. Various modifications to these aspects will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other aspects. Thus, the
claims are not intended to be limited to the aspects shown
herein, but are to be accorded the full scope consistent with
the language claims, wherein reference to an element in the
singular is not intended to mean “one and only one” unless
specifically so stated, but rather “one or more.” Unless
specifically stated otherwise, the term “some” refers to one
or more. Pronouns in the masculine (e.g., his) include the
feminine and neuter gender (e.g., her and its) and vice versa.
Headings and subheadings, if any, are used for convenience
only and do not limit the subject disclosure.

What is claimed is:

1. A decoder device comprising:

a first decoder circuit configured to decode a received
bitstream into a stream of binary symbols correspond-
ing to motion vector data and other compressed image
data, to reserve space in the stream of binary symbols
to insert length fields, to insert the length fields into the
stream of binary symbols, each of the length fields
being determined by the first decoder circuit and being
indicative of a number of consecutive binary symbols
that correspond to the motion vector data, and to store
the stream of binary symbols in a buffer, wherein the
received bitstream is exclusive of the length fields; and

a second decoder circuit configured to retrieve the stream
of binary symbols from the buffer, to determine, based
at least in part on the inserted length fields, consecutive
binary symbols that correspond to the motion vector
data, to decode the consecutive binary symbols that
correspond to the motion vector data via a first decode
path, and to decode the binary symbols that correspond
to the other compressed image data via a second decode
path that is independent of the first decode path, the
second decoder circuit being collocated with the first
decoder circuit in the decoder device.

2. The device of claim 1, wherein the second decoder
circuit is configured to decode the consecutive binary sym-
bols that correspond to the motion vector data via the first
decode path in parallel with the binary symbols that corre-
spond to the other compressed image data being decoded via
the second decode path.

3. The device of claim 1, wherein the first decoder circuit
is further configured to insert each of the length fields into
the stream of binary symbols prior to the corresponding
consecutive binary symbols that are indicated by each of the
length fields.

w

15

20

25

30

35

40

45

50

55

60

65

14

4. The device of claim 3, wherein the second decoder
circuit is further configured to:

retrieve one of the length fields from the stream of binary

symbols;

extract the consecutive binary symbols indicated by the

one of the length fields from the stream of binary
symbols based at least in part on the one of the length
fields; and

decode the extracted consecutive binary symbols via the

first decode path.

5. The device of claim 1, wherein the other compressed
image data comprises at least one of spatial mode data or
transform coefficients.

6. The device of claim 1, wherein the first decoder circuit
comprises a context adaptive binary arithmetic decoder
(CABAC) circuit.

7. The device of claim 1, wherein the second decoder
circuit comprises a symbol decoder circuit.

8. The device of claim 1, wherein:

the first decode path comprises a first alignment circuit

and a first symbol decoder circuit; and

the second decode path comprises a second alignment

circuit and a second symbol decoder circuit that is
physically distinct from the first symbol decoder cir-
cuit.

9. The device of claim 8, wherein the first symbol decoder
circuit is configured to transmit a first symbol size to the first
alignment circuit to update a first bit position of the first
alignment circuit and the second symbol decoder circuit is
configured to transmit a second symbol size to the second
alignment circuit to update a second bit position of the
second alignment circuit.

10. The device of claim 9, wherein the first alignment
circuit is configured to update a first bit position based at
least in part on the first symbol size and the second align-
ment circuit is configured to update a second bit position
based at least in part on the second symbol size.

11. The device of claim 1, wherein the first decoder circuit
comprises on-chip memory that is configured to store the
number of the consecutive binary symbols until a length of
the number of consecutive binary symbols is determined and
inserted as one of the length fields.

12. A method for parallel symbol decoding, the method
comprising:

converting a bitstream into a stream of binary symbols,

wherein the binary symbols comprise motion vector
data and other compressed image data;
determining a number of consecutive binary symbols in
the stream that comprise motion vector data;

inserting, at a decoder device, a length field into the
stream of binary symbols prior to the consecutive
binary symbols that comprise the motion vector data,
wherein the length field indicates the number of the
consecutive binary symbols in the stream that comprise
the motion vector data and the bitstream is exclusive of
the length field;

providing the stream of binary symbols to a first decode

path;
extracting, by the decoder device, the number of consecu-
tive binary symbols indicated by the length field from
the stream of binary symbols upon identifying the
length field in the stream of binary symbols; and

providing the extracted number of consecutive binary
symbols to a second decode path that is separate from
the first decode path.

13. The method of claim 12, wherein the converting, the
determining and the inserting are performed by a first

US 9,432,688 B2

15

decoder circuit and the providing the stream of binary
symbols, the extracting, and the providing the extracted
number of consecutive binary symbols are performed by a
second decoder circuit that is distinct from the first decoder
circuit.

14. The method of claim 13, further comprising:

storing, by the first decoder circuit, the stream of binary

symbols in a memory; and

retrieving, by the second decoder circuit, the stream of

binary symbols from the memory.

15. The method of claim 12, wherein the stream of binary
symbols are provided to the first decode path in parallel with
the extracted number of consecutive binary symbols being
provided to the second decode path.

16. A computer program product comprising instructions
stored in a non-transitory computer-readable storage
medium, the instructions comprising:

instructions for providing a stream of binary symbols to a

first decode path, the stream of binary symbols com-
prising length fields that were inserted at a decoder
device;

instructions for identifying one of the length fields in the

stream of binary symbols while providing the stream of
binary symbols to the first decode path;

instructions for extracting a number of consecutive binary

symbols indicated by the one of the length fields from

10

20

25

16

the stream of binary symbols before the number of
consecutive binary symbols are provided to the first
decode path; and

instructions for providing the extracted number of con-

secutive binary symbols to a second decode path that is
separate from the first decode path.

17. The computer program product of claim 16, where the
instructions further comprise:

instructions for converting a bitstream into the stream of

binary symbols;

instructions for determining the number of the consecu-

tive binary symbols in the stream that comprise motion
vector data; and

instructions for inserting the length fields into the stream

of binary symbols prior to the consecutive binary
symbols.

18. The computer program product of claim 17, wherein
the stream of binary symbols comprises the motion vector
data and other compressed image data.

19. The computer program product of claim 18, wherein
the motion vector data is decoded via the second decode path
and the other compressed image data is decoded via the first
decode path.

20. The computer program product of claim 16, wherein
the stream of binary symbols are provided to the first decode
path in parallel with the extracted number of consecutive
binary symbols being provided to the second decode path.

#* #* #* #* #*

